3.326 \(\int \frac{\text{sech}^4(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\)

Optimal. Leaf size=88 \[ \frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} d (a-b)^{5/2}}-\frac{\tanh ^3(c+d x)}{3 d (a-b)}+\frac{(a-2 b) \tanh (c+d x)}{d (a-b)^2} \]

[Out]

(b^2*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a - b)^(5/2)*d) + ((a - 2*b)*Tanh[c + d*x])/((a -
 b)^2*d) - Tanh[c + d*x]^3/(3*(a - b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.10538, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3191, 390, 208} \[ \frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} d (a-b)^{5/2}}-\frac{\tanh ^3(c+d x)}{3 d (a-b)}+\frac{(a-2 b) \tanh (c+d x)}{d (a-b)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^4/(a + b*Sinh[c + d*x]^2),x]

[Out]

(b^2*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a - b)^(5/2)*d) + ((a - 2*b)*Tanh[c + d*x])/((a -
 b)^2*d) - Tanh[c + d*x]^3/(3*(a - b)*d)

Rule 3191

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, T
an[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^n)
^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILt
Q[q, 0] && GeQ[p, -q]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{sech}^4(c+d x)}{a+b \sinh ^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (1-x^2\right )^2}{a-(a-b) x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{a-2 b}{(a-b)^2}-\frac{x^2}{a-b}+\frac{b^2}{(a-b)^2 \left (a-(a-b) x^2\right )}\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{(a-2 b) \tanh (c+d x)}{(a-b)^2 d}-\frac{\tanh ^3(c+d x)}{3 (a-b) d}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{a-(a-b) x^2} \, dx,x,\tanh (c+d x)\right )}{(a-b)^2 d}\\ &=\frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} (a-b)^{5/2} d}+\frac{(a-2 b) \tanh (c+d x)}{(a-b)^2 d}-\frac{\tanh ^3(c+d x)}{3 (a-b) d}\\ \end{align*}

Mathematica [A]  time = 0.491389, size = 84, normalized size = 0.95 \[ \frac{\frac{3 b^2 \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} (a-b)^{5/2}}+\frac{\tanh (c+d x) \left ((a-b) \text{sech}^2(c+d x)+2 a-5 b\right )}{(a-b)^2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^4/(a + b*Sinh[c + d*x]^2),x]

[Out]

((3*b^2*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a - b)^(5/2)) + ((2*a - 5*b + (a - b)*Sech[c +
 d*x]^2)*Tanh[c + d*x])/(a - b)^2)/(3*d)

________________________________________________________________________________________

Maple [B]  time = 0.07, size = 535, normalized size = 6.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^4/(a+b*sinh(d*x+c)^2),x)

[Out]

1/d*b^2/(a-b)^2/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)
*a)^(1/2))-1/d*b^3/(a-b)^2/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)
/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))-1/d*b^2/(a-b)^2/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*
d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))-1/d*b^3/(a-b)^2/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)-a+2*b)*
a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))+2/d/(a-b)^2/(tanh(1/2*d*x+1/2*c)^2
+1)^3*tanh(1/2*d*x+1/2*c)^5*a-4/d/(a-b)^2/(tanh(1/2*d*x+1/2*c)^2+1)^3*tanh(1/2*d*x+1/2*c)^5*b+4/3/d/(a-b)^2/(t
anh(1/2*d*x+1/2*c)^2+1)^3*tanh(1/2*d*x+1/2*c)^3*a-16/3/d/(a-b)^2/(tanh(1/2*d*x+1/2*c)^2+1)^3*tanh(1/2*d*x+1/2*
c)^3*b+2/d/(a-b)^2/(tanh(1/2*d*x+1/2*c)^2+1)^3*tanh(1/2*d*x+1/2*c)*a-4/d/(a-b)^2/(tanh(1/2*d*x+1/2*c)^2+1)^3*t
anh(1/2*d*x+1/2*c)*b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.81998, size = 5762, normalized size = 65.48 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/6*(12*(a^2*b - a*b^2)*cosh(d*x + c)^4 + 48*(a^2*b - a*b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + 12*(a^2*b - a*b^
2)*sinh(d*x + c)^4 - 8*a^3 + 28*a^2*b - 20*a*b^2 - 24*(a^3 - 3*a^2*b + 2*a*b^2)*cosh(d*x + c)^2 - 24*(a^3 - 3*
a^2*b + 2*a*b^2 - 3*(a^2*b - a*b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 3*(b^2*cosh(d*x + c)^6 + 6*b^2*cosh(d*x
 + c)*sinh(d*x + c)^5 + b^2*sinh(d*x + c)^6 + 3*b^2*cosh(d*x + c)^4 + 3*(5*b^2*cosh(d*x + c)^2 + b^2)*sinh(d*x
 + c)^4 + 3*b^2*cosh(d*x + c)^2 + 4*(5*b^2*cosh(d*x + c)^3 + 3*b^2*cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*b^2*c
osh(d*x + c)^4 + 6*b^2*cosh(d*x + c)^2 + b^2)*sinh(d*x + c)^2 + b^2 + 6*(b^2*cosh(d*x + c)^5 + 2*b^2*cosh(d*x
+ c)^3 + b^2*cosh(d*x + c))*sinh(d*x + c))*sqrt(a^2 - a*b)*log((b^2*cosh(d*x + c)^4 + 4*b^2*cosh(d*x + c)*sinh
(d*x + c)^3 + b^2*sinh(d*x + c)^4 + 2*(2*a*b - b^2)*cosh(d*x + c)^2 + 2*(3*b^2*cosh(d*x + c)^2 + 2*a*b - b^2)*
sinh(d*x + c)^2 + 8*a^2 - 8*a*b + b^2 + 4*(b^2*cosh(d*x + c)^3 + (2*a*b - b^2)*cosh(d*x + c))*sinh(d*x + c) -
4*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + 2*a - b)*sqrt(a^2 - a*b))/(b*cosh
(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cos
h(d*x + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b))
+ 48*((a^2*b - a*b^2)*cosh(d*x + c)^3 - (a^3 - 3*a^2*b + 2*a*b^2)*cosh(d*x + c))*sinh(d*x + c))/((a^4 - 3*a^3*
b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^6 + 6*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)*sinh(d*x + c)
^5 + (a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*sinh(d*x + c)^6 + 3*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x
+ c)^4 + 3*(5*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^2 + (a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d)*s
inh(d*x + c)^4 + 3*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^2 + 4*(5*(a^4 - 3*a^3*b + 3*a^2*b^2 - a
*b^3)*d*cosh(d*x + c)^3 + 3*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*(a^4 -
 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^4 + 6*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^2 + (a
^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d)*sinh(d*x + c)^2 + (a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d + 6*((a^4 - 3*a^3
*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^5 + 2*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^3 + (a^4 - 3
*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c))*sinh(d*x + c)), 1/3*(6*(a^2*b - a*b^2)*cosh(d*x + c)^4 + 24*(a^2*
b - a*b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + 6*(a^2*b - a*b^2)*sinh(d*x + c)^4 - 4*a^3 + 14*a^2*b - 10*a*b^2 - 1
2*(a^3 - 3*a^2*b + 2*a*b^2)*cosh(d*x + c)^2 - 12*(a^3 - 3*a^2*b + 2*a*b^2 - 3*(a^2*b - a*b^2)*cosh(d*x + c)^2)
*sinh(d*x + c)^2 - 3*(b^2*cosh(d*x + c)^6 + 6*b^2*cosh(d*x + c)*sinh(d*x + c)^5 + b^2*sinh(d*x + c)^6 + 3*b^2*
cosh(d*x + c)^4 + 3*(5*b^2*cosh(d*x + c)^2 + b^2)*sinh(d*x + c)^4 + 3*b^2*cosh(d*x + c)^2 + 4*(5*b^2*cosh(d*x
+ c)^3 + 3*b^2*cosh(d*x + c))*sinh(d*x + c)^3 + 3*(5*b^2*cosh(d*x + c)^4 + 6*b^2*cosh(d*x + c)^2 + b^2)*sinh(d
*x + c)^2 + b^2 + 6*(b^2*cosh(d*x + c)^5 + 2*b^2*cosh(d*x + c)^3 + b^2*cosh(d*x + c))*sinh(d*x + c))*sqrt(-a^2
 + a*b)*arctan(-1/2*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + 2*a - b)*sqrt(-
a^2 + a*b)/(a^2 - a*b)) + 24*((a^2*b - a*b^2)*cosh(d*x + c)^3 - (a^3 - 3*a^2*b + 2*a*b^2)*cosh(d*x + c))*sinh(
d*x + c))/((a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^6 + 6*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cos
h(d*x + c)*sinh(d*x + c)^5 + (a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*sinh(d*x + c)^6 + 3*(a^4 - 3*a^3*b + 3*a^2*
b^2 - a*b^3)*d*cosh(d*x + c)^4 + 3*(5*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^2 + (a^4 - 3*a^3*b +
 3*a^2*b^2 - a*b^3)*d)*sinh(d*x + c)^4 + 3*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^2 + 4*(5*(a^4 -
 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^3 + 3*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c))*sinh(
d*x + c)^3 + 3*(5*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^4 + 6*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3
)*d*cosh(d*x + c)^2 + (a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d)*sinh(d*x + c)^2 + (a^4 - 3*a^3*b + 3*a^2*b^2 - a*
b^3)*d + 6*((a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c)^5 + 2*(a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*co
sh(d*x + c)^3 + (a^4 - 3*a^3*b + 3*a^2*b^2 - a*b^3)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**4/(a+b*sinh(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.41082, size = 192, normalized size = 2.18 \begin{align*} \frac{b^{2} \arctan \left (\frac{b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a - b}{2 \, \sqrt{-a^{2} + a b}}\right )}{{\left (a^{2} d - 2 \, a b d + b^{2} d\right )} \sqrt{-a^{2} + a b}} + \frac{2 \,{\left (3 \, b e^{\left (4 \, d x + 4 \, c\right )} - 6 \, a e^{\left (2 \, d x + 2 \, c\right )} + 12 \, b e^{\left (2 \, d x + 2 \, c\right )} - 2 \, a + 5 \, b\right )}}{3 \,{\left (a^{2} d - 2 \, a b d + b^{2} d\right )}{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

b^2*arctan(1/2*(b*e^(2*d*x + 2*c) + 2*a - b)/sqrt(-a^2 + a*b))/((a^2*d - 2*a*b*d + b^2*d)*sqrt(-a^2 + a*b)) +
2/3*(3*b*e^(4*d*x + 4*c) - 6*a*e^(2*d*x + 2*c) + 12*b*e^(2*d*x + 2*c) - 2*a + 5*b)/((a^2*d - 2*a*b*d + b^2*d)*
(e^(2*d*x + 2*c) + 1)^3)